AN ADAPTIVE, RATE-OPTIMAL TEST OF LINEARITY FOR MEDIAN REGRESSION MODELS by
نویسندگان
چکیده
This paper is concerned with testing the hypothesis that a conditional median function is linear against a nonparametric alternative with unknown smoothness. We develop a test that is uniformly consistent against alternatives whose distance from the linear model converges to zero at the fastest possible rate. The test accommodates conditional heteroskedasticity of unknown form. The numerical performance and usefulness of the test are illustrated by the results of Monte Carlo experiments and an empirical example.
منابع مشابه
Chaotic Test and Non-Linearity of Abnormal Stock Returns: Selecting an Optimal Chaos Model in Explaining Abnormal Stock Returns around the Release Date of Annual Financial Statements
For many investors, it is important to predict the future trend of abnormal stock returns. Thus, in this research, the abnormal stock returns of the listed companies in Tehran Stock Exchange were tested since 2008- 2017 using three hypotheses. The first and second hypotheses examined the non-linearity and non-randomness of the abnormal stock returns ′ trend around the release date of annual fin...
متن کاملA Real Time Adaptive Multiresolution Adaptive Wiener Filter Based On Adaptive Neuro-Fuzzy Inference System And Fuzzy evaluation
In this paper, a real-time denoising filter based on modelling of stable hybrid models is presented. Thehybrid models are composed of the shearlet filter and the adaptive Wiener filter in different forms.The optimization of various models is accomplished by the genetic algorithm. Next, regarding thesignificant relationship between Optimal models and input images, changing the structure of Optim...
متن کاملRelevance vector machine and multivariate adaptive regression spline for modelling ultimate capacity of pile foundation
This study examines the capability of the Relevance Vector Machine (RVM) and Multivariate Adaptive Regression Spline (MARS) for prediction of ultimate capacity of driven piles and drilled shafts. RVM is a sparse method for training generalized linear models, while MARS technique is basically an adaptive piece-wise regression approach. In this paper, pile capacity prediction models are developed...
متن کاملBayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data
Dynamic panel data models include the important part of medicine, social and economic studies. Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models. The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance. Recently, quantile regression to analyze dynamic pa...
متن کاملFriction Compensation for Dynamic and Static Models Using Nonlinear Adaptive Optimal Technique
Friction is a nonlinear phenomenon which has destructive effects on performance of control systems. To obviate these effects, friction compensation is an effectual solution. In this paper, an adaptive technique is proposed in order to eliminate limit cycles as one of the undesired behaviors due to presence of friction in control systems which happen frequently. The proposed approach works for n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002